On the Compressibility of Operators in Wavelet Coordinates

نویسنده

  • Rob P. Stevenson
چکیده

preprint No. 1249, Department of Mathematics, University of Utrecht, July 2002. Submitted to SIAM J. Math. Anal. In [CDD00], Cohen, Dahmen and DeVore proposed an adaptive wavelet algorithm for solving operator equations. Assuming that the operator defines a boundedly invertible mapping between a Hilbert space and its dual, and that a Riesz basis of wavelet type for this Hilbert space is available, the operator equation can be transformed into an equivalent well-posed infinite matrix-vector system. This system is solved by an iterative method, where each application of the infinite stiffness matrix is replaced by an adaptive approximation. Assuming that the stiffness matrix is sufficiently compressible, i.e., that it can be sufficiently well approximated by sparse matrices, it was proven that the adaptive method has optimal computational complexity in the sense that it converges with the same rate as the best N -term approximations for the solution assuming it would be explicitly available. With the available results concerning compressibility however, this optimality was actually restricted to solutions with limited Besov regularity. In this paper we derive improved results concerning compressibility, which imply that with wavelets that have sufficiently many vanishing moments and that are sufficiently smooth, the adaptive wavelet method has optimal computational complexity independent of the regularity of the solution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

‎On the two-wavelet localization operators on homogeneous spaces with relatively invariant measures

In ‎the present ‎paper, ‎we ‎introduce the ‎two-wavelet ‎localization ‎operator ‎for ‎the square ‎integrable ‎representation ‎of a‎ ‎homogeneous space‎ with respect to a relatively invariant measure. ‎We show that it is a bounded linear operator. We investigate ‎some ‎properties ‎of the ‎two-wavelet ‎localization ‎operator ‎and ‎show ‎that ‎it ‎is a‎ ‎compact ‎operator ‎and is ‎contained ‎in‎ a...

متن کامل

A Class of compact operators on homogeneous spaces

Let  $varpi$ be a representation of the homogeneous space $G/H$, where $G$ be a locally compact group and  $H$ be a compact subgroup of $G$. For  an admissible wavelet $zeta$ for $varpi$  and $psi in L^p(G/H), 1leq p <infty$, we determine a class of bounded  compact operators  which are related to continuous wavelet transforms on homogeneous spaces and they are called localization operators.

متن کامل

A Wavelet-based Spoofing Error Compensation Technique for Single Frequency GPS Stationary Receiver

Spoofing could pose a major threat to Global Positioning System (GPS) navigation, so the GPS users have to gain an in-depth understanding of GPS spoofing. Since spoofing attack can influence position results, spoof compensation is possible through reducing position deviations. In this paper, a novel processing technique is proposed and the wavelet transform is used to eliminate the impact of sp...

متن کامل

3D Inversion of Magnetic Data through Wavelet based Regularization Method

This study deals with the 3D recovering of magnetic susceptibility model by incorporating the sparsity-based constraints in the inversion algorithm. For this purpose, the area under prospect was divided into a large number of rectangular prisms in a mesh with unknown susceptibilities. Tikhonov cost functions with two sparsity functions were used to recover the smooth parts as well as the sharp ...

متن کامل

Localization operators on homogeneous spaces

Let $G$ be a locally compact group, $H$ be a compact subgroup of $G$ and $varpi$ be a representation of the homogeneous space $G/H$ on a Hilbert space $mathcal H$. For $psi in L^p(G/H), 1leq p leqinfty$, and an admissible wavelet $zeta$ for $varpi$, we define the localization operator $L_{psi,zeta} $ on $mathcal H$ and we show that it is a bounded operator. Moreover, we prove that the localizat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2004